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Abstract

This paper is devoted to energy pumping: exhibiting a multi-degree-of-freedom (dof) nonlinear
attachment coupled to a single-dof linear one, energy’s area leading to energy pumping phenomenon is
increased by involving different nonlinear modes in the process.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Energy pumping corresponds to control of linear structure by coupling it to adapted passive
nonlinear structure [1–5]. However, as described in Ref. [6], energy pumping occurs above a
specific value of the initial energy level: so when energy injected is too low, energy transfer from
the linear structure to the nonlinear one does not appear. When energy pumping occurs, energy
decreases in the linear structure first due to the transient nonlinear efficient phenomenon, then
only due to damping dissipation (less efficient) when residual energy is too low in the coupled
system. In this letter use of several nonlinear modes is planned in order to increase the span of
energy leading to energy pumping activation. An example is given to demonstrate the
phenomenon that is also investigated using time–frequency analysis (Hilbert Transform (HT)).
see front matter r 2004 Elsevier Ltd. All rights reserved.
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2. Instantaneous Frequency (IF) analysis

In the previous studies about energy pumping [3,5,7,8], essentially one-degree-of-freedom (dof)
nonlinear attachment has been studied as shown in Fig. 1.
The governing equations of such a system are

M €x1 þ l1 _x1 þ k1x1 þ gðx1 � y1Þ ¼ 0;

m €y1 þ ls _y1 þ Cy31 þ gðy1 � x1Þ ¼ 0: ð1Þ

The linear structure is excited by an impulsion, so we consider free oscillations of structures with
initial conditions: x1ð0Þ ¼ y1ð0Þ ¼ _y1ð0Þ ¼ 0 and _x1ð0Þ ¼

ffiffiffiffiffi
2h

p
where h is the energy of the system

at t ¼ 0þ: In this system, energy pumping occurs above a specific value of the energy level. Indeed,
by considering system (1) with the following parameters k1 ¼ 4000Nm�1; l1 ¼ 100N sm�1; M ¼

4000kg; g ¼ 1000Nm�1; m ¼ 4000kg; ls ¼ 300N sm�1; C ¼ 600Nm�3; energy pumping occurs
for h ¼ 14 as shown in Fig. 2(c) where resonance of the nonlinear oscillator (y1ðtÞ) occurs which
produces attenuation of the response of the linear oscillator (x1ðtÞ) in plot (d). When initial energy
is too low, for instance h ¼ 5; there is no resonance of the nonlinear attachment as shown in Fig.
2(a) and no energy pumping occurs as shown in Fig. 2(b).
To observe this resonance capture a time–frequency analysis must be performed since

resonance between the linear mode and the nonlinear normal mode occurs during the transient
responses. That is why we can use the HT and its properties which are often used in nonlinear free
vibrations in non-stationary domain, in particular the concept of IF. As a generalization of the
definition of frequency, IF is defined as the rate of change of the phase angle at time t of the
analytic version of the signal [9]. Given a real signal sðtÞ; the analytic signal zðtÞ is a complex signal
having the actual signal as the real part and the HT of the signal as the imaginary component,
namely

zðtÞ ¼ sðtÞ þ jH½sðtÞ� ¼ aðtÞejfðtÞ; (2)

where the amplitude aðtÞ and the phase fðtÞ are given by

aðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsðtÞÞ2 þ ðH½sðtÞ�Þ2

q
and fðtÞ ¼ tan�1

H½sðtÞ�

sðtÞ

� �
(3)
Fig. 1. System considered with one nonlinear normal mode.
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Fig. 2. Resonance capture occurrence above a specific value of initial injected energy h. With h ¼ 5; (a) damped free

oscillations of nonlinear oscillator y1ðtÞ and (b) no energy pumping occurs for the linear oscillator x1ðtÞ: dotted line

denotes the displacement of the linear oscillator without coupling and the solid line denotes the displacement of the

linear oscillator with coupling. With h ¼ 14; there is (c) resonance of the nonlinear oscillator y1ðtÞ and (d) energy

pumping occurs: dotted line denotes the displacement of the linear oscillator without coupling and the solid line denotes

the displacement of the linear oscillator with coupling.
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and the HT is given by the principal value of the following integral:

H½sðtÞ� ¼
1

p

Z 1

�1

sðtÞ
t � t

dt: (4)

The IF is, by definition

f iðtÞ ¼
1

2p
dfðtÞ
dt

: (5)

The IF definition captures the time variation of the frequency accurately, where as when the
Fourier domain is used, the results contain a large number of components with different
frequencies and the simple nature of the signal is lost. Thus, a frequency analysis can be
performed with the calculation of IF. By considering system (1) with the previous values of
parameters, we can analyse IF when energy pumping occurs ðh ¼ 14Þ as shown in Fig. 3.
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Fig. 3. Resonance capture of the nonlinear normal mode h ¼ 14 studied with time–frequency analysis: IF of y1ðtÞ is

denoted by a solid line and the IF of the linear mode is denoted by a thick solid line.
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Clearly, when energy pumping occurs, it appears that during 20 s a resonant capture also occurs
with the nonlinear oscillator: the IF of y1ðtÞ crosses the linear frequency and becomes identical to
the IF of the linear mode as shown in Fig. 3 (energy transfer occurs). However, this phenomenon
takes place for a high level of energy ðh ¼ 14Þ since when initial energy is too small ðh ¼ 5Þ; the
phenomenon does not occur. That is why multiple nonlinear normal modes can be used to obtain
a larger span of energy.
3. Use of multiple nonlinear normal modes

The use of several nonlinear normal modes is planned by conceiving a nonlinear attachment
composed of several nonlinear oscillators. That is why a 4 dof system composed of a linear
structure weakly coupled to a nonlinear structure is considered as shown in Fig. 4. The nonlinear
system is not linked to the ground. Thus, it can be easily added to the linear structure in practice
for real structures.
According to Newton’s second law of motion

M €x1 þ l1 _x1 þ k1x1 þ gðx1 � y1Þ ¼ 0;

m1 €y1 þ l2ð _y1 � _y2Þ þ C1ðy1 � y2Þ
3
þ gðy1 � x1Þ ¼ 0;

m2 €y2 þ l2ð _y2 � _y1Þ þ l3ð _y2 � _y3Þ þ C1ðy2 � y1Þ
3
þ C2ðy2 � y3Þ

3
¼ 0;

m3 €y3 þ l3ð _y3 � _y2Þ þ C2ðy3 � y2Þ
3
¼ 0: ð6Þ
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Fig. 4. System considered with multiple nonlinear oscillators.
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The linear structure is excited by an impulsion, so we consider free oscillations of structures with
initial conditions: x1ð0Þ ¼ y1ð0Þ ¼ _y1ð0Þ ¼ y2ð0Þ ¼ _y2ð0Þ ¼ y3ð0Þ ¼ _y3ð0Þ ¼ 0 and _x1ð0Þ ¼

ffiffiffiffiffi
2h

p
;

where h is the energy of the system at t ¼ 0þ: The decoupled nonlinear structure (attached to
the linear one) possesses three nonlinear normal modes [7]: the first mode corresponds to a rigid-
body mode of the decoupled nonlinear system; there is an in-phase nonlinear normal mode,
y2ðtÞ � y3ðtÞ ¼ y1ðtÞ � y2ðtÞ; and there is an out-of-phase nonlinear normal mode, y2ðtÞ � y3ðtÞ ¼

�ðy1ðtÞ � y2ðtÞÞ: So the nonlinear modal coordinates w1ðtÞ; w2ðtÞ and w3ðtÞ which correspond to the
nonlinear normal modes of the decoupled nonlinear structure can be introduced

w1ðtÞ ¼ y1ðtÞ þ y2ðtÞ þ y3ðtÞ;

w2ðtÞ ¼ ðy2ðtÞ � y3ðtÞÞ � ðy1ðtÞ � y2ðtÞÞ ¼ 2y2ðtÞ � y1ðtÞ � y3ðtÞ;

w3ðtÞ ¼ ðy2ðtÞ � y3ðtÞÞ þ ðy1ðtÞ � y2ðtÞÞ ¼ y1ðtÞ � y3ðtÞ: ð7Þ

When coupling is introduced, the system possesses nonlinear normal modes which are
perturbations of the precedent nonlinear normal modes. When frequency of one nonlinear
normal mode becomes identical to the natural frequency of the linear mode, internal
resonances (and bifurcations of nonlinear normal modes) may occur and energy pumping
can take place [5]. By designing skillfully the nonlinear oscillators, it is possible to have
nonlinear normal modes that cross the linear frequency for different levels of energy. Thus,
energy transfer will take place first between the linear mode and with one nonlinear normal
mode, and when the energy decreases (due to damping dissipation or if the initial energy
injected is low), the energy transfer will still take place with another nonlinear normal mode. To
observe this phenomenon, a time–frequency analysis must be performed since resonances
between the linear mode and the nonlinear normal modes occur during the transient responses. By
considering system (6) with the following parameters k1 ¼ 4000Nm�1; l1 ¼ 100N sm�1; M ¼

4000kg; g ¼ 1000Nm�1; m1 ¼ m2 ¼ m3 ¼ 1333kg; l2 ¼ l3 ¼ 100N sm�1; C1 ¼ 600Nm�3;
C2 ¼ 120Nm�3; we can analyse IFs of the nonlinear normal modes. The viscous damping
ratio of the linear structure is thus 2:5%; which is closed to the damping ratio of structures in Civil
Engineering. It should be noted that the total mass added ð3
 1333kg) is the same as in
Section 2 ðm ¼ 4000kgÞ and damping ratio for nonlinear system is also the same as in Section 2
ðl2=m2 ¼ l3=m3 ¼ ls=mÞ:
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First, if we consider a high initial energy h ¼ 20; then in this case, as shown in Fig. 5, a
resonance capture occurs with the third nonlinear normal mode w3ðtÞ (the IF of w3ðtÞ
becomes identical to the IF of the linear mode during 40 s as shown in Fig. 5(a)). Thus, there
is a resonance of the third nonlinear normal mode as shown in Fig. 5(b) which produces
attenuation of linear vibrations as shown in Fig. 5(c). In this case, there is not a resonance
capture with the nonlinear normal mode w2ðtÞ since its IF is not captured by the IF of the
linear mode as shown in Fig. 5(a) (the energy injected is too high and the phenomenon of
energy pumping is less pronounced).
Secondly, if we consider a lower initial energy h ¼ 1:6; then as shown in Fig. 6, a resonance

capture occurs with the second nonlinear normal mode w2ðtÞ (the IF of w2ðtÞ becomes identical to
the IF of the linear mode as shown in Fig. 6(a) during 40 s). Thus, there is resonance of the
nonlinear normal mode as shown in Fig. 6(b) which produces attenuation of linear vibrations
as shown in Fig. 6(c). In this case, there is not a resonance capture with the nonlinear normal
mode w3ðtÞ since its IF is under the IF of the linear mode as shown in Fig. 6(a) (the energy injected
is too low).
It should be noted that it was not possible to obtain energy pumping for this low level of energy

in the case of 1 dof nonlinear system as shown in Section 2 with the same parameters. So the use of
multiple nonlinear normal modes allows to expand the span of energy where energy pumping
occurs. The nonlinear normal modes resonate according to the level of energy present in the
system.
Between this large span of energy, there are resonance captures with the two nonlinear normal

modes w2ðtÞ and w3ðtÞ: Indeed, for h ¼ 5:2; as shown in Fig. 7, first for to20 s there is resonance of
the nonlinear normal mode w3ðtÞ as shown in Fig. 7(b) (and so an attenuation of linear vibrations
as shown in Fig. 7(d)) since the IF of w3ðtÞ becomes identical to the linear frequency as shown in
Fig. 7(a). But after t ¼ 20 s; as energy of the linear oscillator decreases, the resonance capture of
w3ðtÞ is finished. However, owing to the design of multiple nonlinear normal modes, resonance of
the nonlinear normal mode w2ðtÞ occurs as shown in Fig. 7(c) since the energy is lower and the IF
of w2ðtÞ becomes identical in mean to the linear frequency as shown in Fig. 7(a). Thus, the
vibrations of the linear oscillator are still attenuated after t ¼ 20 s as shown in Fig. 7(d). Thus,
energy pumping phenomenon is more efficient.
4. Conclusion

Energy pumping is improved owing to the use of multiple nonlinear normal modes. Thus, the
span of energy where the phenomenon occurs is increased. The calculation of instantaneous
frequency owing to the Hilbert Transform underlines the phenomena of resonance captures with
the different nonlinear normal modes resonating for different levels of energy. The use of multiple
nonlinear normal modes allows the occurrence of energy pumping for lower energies. Different
nonlinear normal modes resonate in the function of the energy level. The efficiency of energy
pumping is thus improved by increasing the span of energy where energy pumping occurs. To
understand better the phenomenon and the different captures, an analytical study can be
performed using the analytical techniques (modified balance method [6],...) already used for
analysing energy pumping.
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Fig. 5. Resonance capture of the nonlinear normal mode w3ðtÞ with h ¼ 20: (a) Time–frequency analysis is considered:
IF of w2ðtÞ is denoted by a solid line, IF of w3ðtÞ is denoted by a thin dotted line and IF of the linear oscillator is denoted

by a thick solid line. (b) Resonance of w3ðtÞ: (c) Vibrations of the linear oscillator (dotted line denotes the displacement
of the linear oscillator without coupling and the solid line denotes the displacement of the linear oscillator with

coupling).
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Fig. 6. Resonance capture of the nonlinear normal mode w2ðtÞ with h ¼ 1:6: (a) Time–frequency analysis is considered:
IF of w2ðtÞ is denoted by a solid line, IF of w3ðtÞ is denoted by a thin dotted line and IF of the linear oscillator is denoted

by a thick solid line. (b) Resonance of w2ðtÞ: (c) Vibrations of the linear oscillator (dotted line denotes the displacement
of the linear oscillator without coupling and the solid line denotes the displacement of the linear oscillator with

coupling).

E. Gourdon, C.H. Lamarque / Journal of Sound and Vibration 285 (2005) 711–720718



ARTICLE IN PRESS

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

(a)

IF
 (

H
z)

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4

(b)

w
3(t

)

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4

(c)

w
2(t

)

0 10 20 30 40 50 60 70 80 90 100

-3

-2

-1

0

1

2

3

(d) t (s)

x 1(t
)

Fig. 7. Resonance capture of the two nonlinear normal modes w2ðtÞ and w3ðtÞ with h ¼ 5:2: (a) Time–frequency analysis
is considered: IF of w2ðtÞ is denoted by a solid line, IF of w3ðtÞ is denoted by a thin dotted line and IF of the linear

oscillator is denoted by a thick solid line. (b) Resonance of w3ðtÞ: (c) Resonance of w2ðtÞ: (d) Vibrations of the linear
oscillator (dotted line denotes the displacement of the linear oscillator without coupling and the solid line denotes the

displacement of the linear oscillator with coupling).
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